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A layer of viscous incompressible fluid is confined between two horizontal plates 
which rotate rapidly in their own plane with a constant angular velocity. A hemi- 
sphere has its plane face joined to the lower plate and when a uniform flow is 
forced past such an obstacle, a Taylor column bounded by thin detached vertical 
shear layers forms. The linear theory for this problem, wherein the Rossby 
number E is set equal to zero on the assumption that the flow is slow, is examined 
in detail. The nonlinear modifications of the shear layers are then investigated for 
the case when E - E4, where E is the Ekman number. In  particular, it is shown 
that provided that the Rossby number is large enough separation occurs in the 
free shear layers. The extension of the theory to flow past arbitrary spheroids is 
indicated. 

1. Introduction 
When a body translates through a contained rapidly rotating fluid the forma- 

tion of aTaylor column bounded by thin detached shear layersiswell documented. 
The phenomenon was first observed by Taylor (1923), who towed a short upright 
circular cylinder across the horizontal bottom of a rotating tank. His experiments 
have provoked numerous other investigations in which either various obstacles 
have been made to translate through the fluid or alternatively a flow has been 
forced past a stationary obstacle. In  either situation the net effect is essentially 
the same. 

When the speed U of the basic flow is very slow a slug of stagnant fluid is 
observed inside the cylinder %?which circumscribes the obstacle and hasgenerators 
parallel to the rotation vector. A set of thin detached vertical shear layers a t  9? 
form the perimeter of the Taylor column. Outside %? the fluid appears to move in 
a two-dimensional manner almost as if past a solid circular cylinder, the difference 
being that, no matter how small U is, there is always an observable asymmetry in 
the flow about the downstream radius. This may be readily seen, for example, by 
a careful inspection of a photograph by Baker (see Greenspan 1968, p. 3, plate 
2 ( b ) ) .  As U is increased eventually a separated eddy appears behind the column 
and to the left (facing upstream) when the rotation is counterclockwise. 
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A further increase in U leads to a progressive deterioration of the situation 
as the convective terms in the equations of motion and three-dimensional effects 
assume an increasing importance. In  an investigation by Hide, Ibbetson & 
Lighthill (1968)) in which a flow transverse to the rotation axis was forced past 
a sphere, the axis of the Taylor column was observed to trail in the downstream 
direction and make a small angle @ = tan-l{KU/2Qa} with the rotation vector. 
Here Q is the steady rotation rate, a is the radiusof the sphere andh’is a constant. 
The experiments of Hide and Ibbetson indicated the K = 1.54 5 0.04 while 
Lighthill predicted on a theoretical basis that K = 1.5. An additional feature 
observed by Hide & Ibbetson (1966) in their study of the flow past a stubby 
circular cylinder is that the column recedes eventually from the cylinder V to the 
rear portion of the obstacle. The appearance of this ‘partial’ Taylor column is 
accompanied by a strong cross-flow over the front portion of the obstacle. Hide & 
Ibbetson (1966) also noted that the flow in the vicinity of the Taylor column was 
not completely stagnant and observed a feeble secondary flow there which they 
attributed to viscous effects. Obviously the flow a t  this stage is becoming rather 
complex and no attempt will be made here to describe these latter situations 
theoretically. 

For motion that is very SIOW in the sense that the convective terms in the 
equations of motion may be neglected, the two-dimensional nature of the flow 
may be explained by the Taylor-Proudman theorem. However, when the flow 
field is unbounded in all directions, the solution of the steady inviscid equations is 
indeterminate (Taylor 1933). Grace (1926) considered the motion of a sphere 
transverse to the rotation axis in an unbounded fluid and attempted to solve the 
unsteady inviscid equations in the limit Qt -+ a. His solution was completed, for 
the more general case of an ellipsoid, by Stewartson (1953)) who showed that the 
flow became steady everywhere as Qt --f 03 except in the immediate vicinity of V. 
The main features of this solution were an asymmetric flow exterior to V with a 
flux across V. At V the fluid particles change direction abruptly and inside V the 
particle paths lie on arcs of circles on spheres inscribed in 9. The difficulty with 
reconciling this solution with experiment is that physically the fluid is always 
bounded in the axial direction by two plates or perhaps a free surface instead of 
the upper plate. When this happens in other problems, theory and experiment 
may be reconciled by taking the axial extent of the fluid to be very large. In  this 
case, because of the cylindrical character of the flow, this is not possible and here 
the presence of boundaries of the fluid in the axial direction, where the axial 
velocity is zero, is vital. This was pointed out by Stewartson (1967)) who con- 
sidered the unsteady inviscid motion of a sphere transverse to the rotation axis 
in a rotating fluid bounded by two horizontal plates a distance d apart. The 
ultimate steady motion was shown to be stagnant above the sphere while outside 
V the fluid moves around $7 as if past a solid cylinder. Since the convective terms 
were ignored in this approach, the analysis is subject to the restriction UfQa < 1 
and formally corresponds to the limit sequence 1’ --+ 0,  t -+ 03, where v is the 
coefficient of kinematic viscosity. 

Another point of interest in this connexion is the ultimate steady force exerted 
on the sphere. Stewartson (1967) showed that while there is no drag force on the 
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sphere there is a sideways or deflecting force equalto $7rpa3UQ. If the density of 
the sphere and fluid are equal this force just balances the Coriolis force. A series 
of experiments carried out a t  the Meteorological Office in Bracknell, England, 
confirms the general magnitude of the predicted deflecting force (R. Hide, private 
communication). In  more general terms, the results concerning the forces on 
bodies in rotating fluids may be briefly summarized as follows. Suppose that L is 
the linear dimension of the body and h and d are the axial extent of the body and 
fluid, respectively. It is found that, when the ratio hld is large with respect to 
UIClL, the drag force on the body is very small but the deflecting force (perpendi- 
cular to the motion) is appreciable. In  the case of an upright cylindrical body the 
value of the deflecting force is approximately equal to (for very slow motion) 
or less than 2pCllJA per unit height, where A is the cross-sectional area of the 
cylinder. This value may be predicted from linear inviscid theory. Conversely, as 
h/d becomes small with respect to UIQL the situation reverses; the drag becomes 
the dominant force and the deflecting force becomes small. 

A different limit approach to the Taylor-column problem was taken by Jacobs 
(1964), who considered the case of flow, transverse to the rotation axis, past a 
symmetrical obstacle located on the lower of two rapidly rotating horizontal 
plates. Let z measure distance above the lower plate and r measure distance from 
the symmetry axis of the obstacle. Suppose that z = b(r) is the equation of the 
obstacle and b’(a) and b”(a) are the slope and curvature at  the rim of the obstacle 
at r = a. Then Jacobs’ (1964) analysis is concerned with cases where b‘(a) and 
b”(a) are O(1). The flow was analysed on the basis of linear theory wherein the 
basic flow is assumed so slow that the inertial terms in the equations of motion 
are neglected. It was shown that in this situation thegeostrophicmotion consistent 
with the Ekman layers is a stagnant one above the obstacle while elsewhere the 
geostrophic solution is an irrotational potential flow which to leading order passes 
symmetrically by the Taylor column as if it  were a solid cylinder. We note here 
that this procedure corresponds to the limit sequence t + co, v -+ 0 and that the 
non-uniqueness in the inviscid steady equations has been removed by Ekman 
boundary layers on the horizontal surfaces and on the obstacle. Evidently both 
limit sequences are complementary and as far as the determination of the inviscid 
flow is concerned, neither limit sequence is preferred as both lead to the same 
solution. A discussion of the significance of the different limit sequences is given 
in Hide et al. (1968). 

Jacobs (1964) then went on to analyse the thin detached Ea layers which 
partially define the column and which provide the smooth transition from the 
exterior potential flow to the stagnant interior. Since separation is a nonlinear 
phenomenon, it is not surprising that Jacobs (1964) did not predict the separated 
eddy that had been observed behind the column by Taylor (1923) and by many 
others. This, of course, does not imply that this is always the case and the photo- 
graph by Baker in Greenspan (1968, p. 3) provides an experimental example of an 
apparently unseparated slow flow. In  the present paper, the flow past sym- 
metrical obstacles which have an infinite slope at  the rim is considered and of most 
concern is the problem of flow past a hemispherical bump. 

Let us now fix the problem mathematically. Suppose that a layer of viscous 
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incompressible fluid is contained between two rigid horizontal plates of infinite 
extent a t  z* = 0 and z* = d. A symmetrical obstacle has its base joined to the 
lower plate and the base radius is ad. The whole system rotates with a constant 
angular velocity Q about an axis perpendicular to the plates and a flow, trans- 
verse to the rotation axis and having speed U ,  is forced past the bump. In  practice 
this might be accomplished by the sourcesink arrangement of Hide et al. (1968) 
or, in order to achieve the same net effect, by towing the obstacle across the tank 
bottom as in Hide & Ibbetson (1966). The equations governing the steady motion 
and written in a frame that rotates uniformly with the plates are 

(1) I e ( q . V ) q + 2 ( 2  x 9) = - V p -  EV x (V x q), 

v.q = 0. 

Here q is the velocity vector and 2 a unit vector perpendicular to the plates. In  
these equations the physical quantities have been made dimensionless by 

r* = dr, q* = Uq, p* = (pQUd)p, 

where a star indicates a dimensional quantity andp andp are the constant density 
and reduced pressure respectively. The two dimensionless numbers governing 
the motion are the Rossby number e and the Ekman number E,  defined as 

= UlQd,  E = 11/Qd2. 

The linear theory (e = 0 )  of the flow past a hemispherical bump is next ex- 
amined in detail with two aims in mind. First, Jacobs’ (1964) analysis applies 
only to lenticular bodies, that is bodies for which z - ( a  - r )  near the rim at  r = a, 
and we extend it to those for which z - (a - r ) n  near the rim, where 0 < n < 1. 
Here a is the dimensionless radius of the bump. For the hemisphere n = & and 
for the problem studied experimentally by Hide & Ibbetson (1966), namely the 
right circular cylindrical bump, n = 0. The perturbation analysis of the shear 
layers for this problem is complex and considerable attention is devoted to the 
development of a logical analysis of this in 9 2. The second and central aim is to 
form the foundation for a consistent treatment of the nonlinear theory ( E  - E4) 
in $3.  In  particular, the principal result required for the nonlinear analysis is 
derived in $2.3,  where it is shown that to leading order the flow in the external Ea 
layer of the Taylor column is identical to that in the Ea layer for flow past a solid 
circular cylinder. 

The assumption is made at  the outset that the flow takes place in a rapidly 
rotating frame in the sense that the Ekman number E < 1. The velocity com- 
ponents and pressure in the vertical shear layers will subsequently be expanded 
in powers of the Ekman number and on occasion in the formal expansion it is 
necessary to introduce small exponents of E. We remark here that in the experi- 
mental context it is unrealistic to make an order-of-magnitude distinction 
between say E&and EA. However, it is not our purpose here to model closely the 
experimental situation but rather to attempt to explain on the basis of boundary- 
layer theory some of the observed features of the flow. In  particular two things 
are of interest. First, although the leading-order geostrophic flow around the 
column is a symmetrical potential flow identical to the ideal flow past a solid 
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circular cylinder, a weak asymmetrical geostrophic flow is generated for r > a by 
an asymmetrical flow in the vertical shear layers. This feature of the flow is dis- 
cussed in $2.9  on the basis of linear theory. The second and main point of interest 
is that separation occurs in a free shear layer. This is a rather novel phenomenon 
in that separation occurs at a fluid-fluid interface and it is of interest to under- 
stand how this arises. The simplest obstacle to consider for this purpose is the 
hemisphere because the various shear layers that form the perimeter of the 
Taylor column all have a different thickness. This does mean, however, that 
the expansions proceed in powers of EA-, which severely limits the quantitative 
value of the theory. Nevertheless, from a qualitative standpoint, the leading 
terms we consider do fix the character of the motion and show how separation 
can occur. In  particular, it  is shown in $ 3 that when the Rossby number has a 
quite small value [O(E&)] separation occurs in the Ea layer. In  94 the extension 
of the theory to flow past arbitrary spheroids is discussed. 

2.1. 
2. Linear theory 

The geostrophicJEow 
Throughout the majority of the fluid, the flow is geostrophic, arising from a 
balance between the pressure gradient and the Coriolis force in (1). The Taylor- 
Proudman theorem demands that this flow be independent of x .  This solution in 
general fails to satisfy the no-slip condition a t  solid boundaries, and on all 
horizontal boundaries and on the obstacle itself the flow is brought to relative 
rest by viscous forces in thin Ekman layers in a length scale O(E4). 

Let ( r ,  8, x )  be cylindrical co-ordinates centred on the symmetry axis and with 
origin a t  the base of the obstacle with corresponding velocity components (u, v, w )  
and 0 = 0 being the downstream radius. The linear solution for the flow in the 
Ekman layers on horizontal surfaces is well known. In  particular, the Ekman 
layers control the geostrophic flow through the Ekman suction conditions. For 
horizontal boundaries these conditions are 

WG = & +E4CG at x = 4 7 +, 

where WG and CG are the vertical velocity and vorticity respectively in the geo- 
strophic interior. Because the interior flow is independent of z, this implies that 

( 2 )  

in all regions where one horizontal surface is directly above another. In the case 
of the hemisphere, the Ekman suction condition can be shown to take the more 
complicated form 

on the sphere z = (a2-r2)*, where a is the dimensionless radius of the sphere. 
It can be easily shown using an argument similar to that of Jacobs (1964) for a 

49-2 
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lenticular body that the only geostrophic motion compatible with the condition 
(3) and the Ekman conditon (2) at x = I is the stagnant solution. 

The discontinuity in the geostrophic flow at the cylinder r = a is adjusted by 
means of detached vertical shear layers which form the boundary of the Taylor 
column. Since an O(1) adjustment in the swirl velocity is required and since the 
radial pressure gradient and Coriolis force balance in the shear layers, the pressure 
adjustment is of lower order across the shear layers. Thus to leading order the 
geostrophic pressure must be continuous at  r = a and this leads to the result that 
to leading order 

} (4) 
U, = V, = JV, = 0 for r < a, 

U, = cos O{ 1 - a2/r2}, V, = - sin 8(1 + a2/r2}, W, = 0 for r > a. 

Here the possibility of a constant relative circulation O(1) for r > a has been 
excluded since this would result in a radial flux O(E4) in the Ekman layers on the 
horizontal plates. This flux would be independent of 0 and its direction would be 
the same on both the top and bottom plate. Across any cylindrical control surface 
enveloping the Taylor column and having generators perpendicular to the plates 
there would then be a net influx or efflux through the Ekman layers depending on 
the sense of the circulation. Since there is no possible geostrophic flow to balance 
this, a steady circulation is not possible unless there are sources or sinks within 
the fluid. 

2.3. The shear layers 

The basic shear-layer structure for a spherical body has been given in detail by 
Stewartson (1966) in connexion with his study of the flow between two rotating 
concentric spheres that have slightly different rotation rates. The structure 
consists of an external Ef layer at  r = a + and an internal E$ layer at  r = a - 
above the sphere. Sandwiched between the ES and EBlayers there is an inner layer 
of thickness O(E.5). It was shown by Stewartson (1966) that the E.5 layer could 
not adjust a discontinuity in either the swirl velocity or tangential stress and 
both of these quantities must be continuous across the E.5 layer. The role of the 
E* layer is to remove discontinuities in higher-order derivatives of v with respect 
to r .  Physically the Ef layer in many problems recirculates mass to leading order 
(Moore & Saffman 1 9 6 9 ~ ) .  An additional complication arises with the Ekman 
layers. On all horizontal surfaces and on the major portion ofthe hemisphere, these 
layers have a thickness O(E*). However near the equator and underneath the E.5 
layer in a vertical length scale O(E*) the Ekman layer thickens to have a width 
O(E%). The structure is shown schematically in figure 1. 

Within the Et layer a t  r = a + , the leading terms in the expansions for the 
velocity components and pressure are written as 

(5) 1 U~ = (2*a)-1Eau0((, 8 )  + ..., wf = v0((, e) + ..., 
z q  = 2*Eizoo(& 8, z )  + . . ., pi = 2*Ekp0((, 8)  + . . ., 

where 6 = 25(r - a)  E-f is the scaled radial variable in the E$ layer. The Ekman 
compatibility conditions are, for < > 0,  

wo = +av,/aE+O(E*) at ?: = 4~ 4, ( 6 )  
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FIGURE 1. Shear-layer structure for a hemisphere (not to scale). 

and uo and vo can be shown to satisfy the equations 

with an error O(E2). The solution which matches smoothly into the geostrophic 
flow is 

where C and D are as yet undetermined functions of 8. 

order as 

vo = C(8) e-E - 2 sin 8, uo = C'(8) e-5 + 26 cos 8 + D(8),  

In  the E+ layer, the velocity components and pressure are written to leading 

'} (7) 
U' = a-l(2/a)+ Ea%zO(s, 8 )  + ..., V+ = (2/a)3Ea2i0(s, 8 )  +. .. 

where s = (ga)+(a-r)E-+ is the scaled radial variable in the E+ layer. The 
functions Uo; Go, Go and Po are O(1) functions of s and 8, and the scaling index a 
is as yet undetermined. Eliminating the pressure in the momentum equations, 
we obtain 

The Ekman conditions for s > 0 become 

W+ = (&)+E"++Go(s, 8, X )  + ..., p+ = (2/a)$Ea*Fo(s, 8 )  +, 

(8) a3v0/as3 = 2az0/aZ. 

G o =  0 at  x = 1, 
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with an error O(Ei%). The equation of the hemisphere is z N S ~ E )  and 
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- 
- uo I a vo 

+O(E+) at z = 0, 2L’o = ----- as* .a&) 

where the boundary-layer approximation to the sphere has been made. Integra- 
tion of (8) from z = 0 to z = l and application of the Ekman conditions gives 

with aaops = av,/ae. 
We may now eliminate the possibility of a non-trivial axisymmetric solution of 
this system. Since a constant relative circulation in either geostrophic region is 
not possible, the form of an axisymmetric solution in the Ethand E* layers must be 

- wo = Ae-5, wo = Bs5K+(+s%), 

where K+ is the Bessel function of imaginary argument. The only vaIues of the 
constants A and B consistent with continuity of v and av/ar at ( = s = 0 are 
A = B = O .  

The functions Go and 3, are then assumed to be 

;it, = Re(f(s)ei8), Go = Re (-i f’(s)eie),  
wheref(s) satisfies 

f’” - (f’ls”’ - %f/as& = 0, (9) 

with f -+ 0 as s --f co. The primes denote differentiation with respect to s. The 
solutions of (9) behave like 

f N si$-exp {+YS;} 

for large s, where y satisfies the quartic 

y4 - y2 - 2i/a = 0. (10) 

Hence for large s the solutions of (9) either increase or decrease exponentially. In  
the present context, acceptable solutions are given by y = y,, y2 ,  where y1 and y2 
are the roots of (10) having negative real parts: 

y1,72 = - {&[ 1 2 (1. + 8i/a)*J)*. 

For small s, the differential equation shows that 

f = ao{l +&&is* + . . .} +a,{s +&sY + . ..> 
+ a2{s2 + g&sx45 + . . .> + a3{s3 + & S Y .  . + >, 

where uo, a,, a2 and u3 are arbitrary constants. The analytical solution of (9) is 
not known and it will subsequently be solved numerically. It is however clear at 
this stage that continuity of v and avpr as 5 and s tend to zero will not yield 
sufficient conditions to effect a join with the Ea layer and determine the solution. 
The extra needed condition comes from consideration of conservation of flux in 
the E* layer and is similar to an argument used by Moore & Saffman (1969b) in 
their study of the transverse motion of a thin disk in a rotating fluid. 
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2.3. TheJlux condition 

In the Ekman layer under the external Ef layer, to leading order, there is a radial 
flux of fluid per unit length of circumference in the - r direction equal to 

Similarly, in the Ekman layer under the EC layer there is a flux per unit length 
of circumference whose direction is tangential to the sphere in the + r direction 
and is to leading order 

Q+(s, B )  = - $E+(ia)+v+/s$. 

Thus there is a net flux Q(B),  per unit length of circumference, into the Ekman 
layer under the E i  layer; Q(0) consists of the sum of &t evaluated at = 0 + and 
QS evaluated for s < 1. We note here that the contribution from @(s, 8) is 
divergent as s -+ 0 + . Thus we require that s < 1 but sE-h 9 1 ; this is the region 
where the match with the solutions in the E5 and Ef layers takes place. 

Consider now the E* layer. In  this layer v) and W+ are of the same order of 
magnitude and u+ is O(Ef vs). Let 7 = ( r  - a) E-* be the scaled radial variable in 
the E* layer; the Ekman conditions are then, to leading order, 

Hence to leading order u’+ = 0 at  z = 0 + and 1 - , where the boundary-layer 
approximation to the hemisphere has been used, and it appears that the E* layer 
cannot draw fluid from the Ekman layer to leading order. The possibility that 
the net flux can be closed by a swirl velocity in the E% layer can be eliminated 
since to preserve continuity such a velocity would necessarily be of higher order 
in E than that in the geostrophic flow. In  fact, fluid passes into the E* layer through 
the equatorial boundary layer. This is an annular region having a lateral scale 
O(Ef) and a vertical scale O(E*) and on the scale of the E* layer appears as a 
region of zero thickness. This singular type of behaviour is associated with the 
discontinuity in the bottom slope a t  the equator of the hemisphere. At the top 
plate there is no discontinuity and no net transfer of fluid into the E+ layer takes 
place to leading order. 

Consider now the Ef-layer equation 

a3v3./a73 = - 2 aw;/az, 

and integrate this equation across the EQlayer at  constant x outside the equatorial 
boundary layer and Ekman layer on the top plate: 

The variable 7 is related to f ;  and s by 
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and since w+(q, 8, z )  as q + & co must match w&, 8) as c -+ 0 + and v+(s, 8) for 
s < 1 respectively, 

At this stage it is uncertain which term is most important on the right side of this 
equation and so both are retained. We now integrate from z = 0 + (just above the 
equatorial boundary layer) to z = 1 - (just below the Ekman layer on the top 
plate) and since wg(q,8,1- ) vanishes for all 7 

which must equal the inflow &(@. Therefore, to leading order, 

This condition and continuity of swirl velocity 

v+(o, 8 )  = w t ( ~ ,  8)  
and tangential stress 

across the E4 layer are sufficient to determine the solution in the outer shear 
layers. 

In  order to determine 01, the scaling index in the Eb layer, we first suppose that 
a < &. Conditions (13) and (1 1) lead to the following boundary conditions forf: 

f”(0) = 0, lim {f”’-f’/st) = 0. 
s+o+ 

Suppose that f(s) is a non-trivial solution of (9) satisfying conditions (14) which 
vanishes a t  infinity. Equation (9) is multiplied byf*(s), where the star indicates 
the complex conjugate, and integrated from s = 0 to s = 03. Two integrations by 
parts and application of conditions (14) lead to 

Here the fact that f * vanishes at infinity iff does has been used and also the fact 
that f andf* and their first derivatives are bounded a t  s = 0. Thusf(s) is forced 
equal to zero. 

Any choice a > & for the leading term leads to a contradiction regarding the 
function C(r9) in the external E )  layer and therefore the index of the leading term 
in the E: layer is a = & with 

f”(0) = 23, lim{f”’ -f’/st) = 0. (15) 
s-to 

In addition, u0(O, 8) = v0(O, 0) = 0, 



Separation and the Taylor-column problem 777 

so that C(B) = 2 sin 8 and D(B) = - 2 cos B and to leading order the solution in the 
external Ef layer is a symmetrical flow identical to that for flow past a solid 
circular cylinder in a rotating frame (Walker & Stewartson 1972). The solution 
for the leading-order flow in the E5 layer was obtained numerically and the 
method of solution is described in the following section. 

3.4. Numerical solution 

The function f ( s )  has an irregular behaviour near s = 0 in that f "' and all higher 
derivatives with respect to s are large there. The function may be regularized by 
setting x = sf but for large 5 this is not appropriate. Because of this (9) was solved 
numerically in two ranges. For s lying in the range [0, I] we set x = 83 and defining 
auxiliary functions p ( x ) ,  q(x) and y(x) ,  equation (9) becomes 

(16) I dfldx = 4 ~ 3 p ,  dp/dx = 4x3q7 

dqldx = 4x3y + 4x2p, dyldx = 8ixf/a, 

with f (O) = p(O) = q ( O )  = 287 y(O) = O* 

Here a, and a, are the unknown values off andf' a t  s = 0. 

central differences, giving a set of difference equations 
For s lying in the range [I ,  oo), the derivatives in (9) were approximated by 

f n - 2 + ~ n f n - l + ~ ~ n f n + b n f n + l + f n + z  = 0 (17) 

a t  grid points sn = 1 + nh for n = I ,  2,3, . . ., no, where no = (1  - I - 2h)/h. Here 
h is the numerical grid size and the value s = 1 is the value of s at which the 
conditions of zero function and derivative at infinity are imposed as an approxi- 
mation. For a given aspect ratio a, 1 must be taken sufficiently large to ensure no 
significant change in the solution. The coefficients in (17) are 

2h2 2ih4 h2 h3 h2 h3 

s i  asi s$, 8Si7 8; 88%' 
a n = 6 +  ---, b =-4--+- c = _ 4  n 

The solution was then obtained as follows. Arbitrary complex values were 
guessed for a, and a,, say ahi' and aij), and the system (16) integrated in the 
direction of increasing x from x = 0 to x = 1 using a fourth-order Runge-Kutta 
scheme. Various grid sizes in this range were used as a check on the accuracy and 
the step length in x typically ranged from 0.01 to 0.0025. This produced values of 
f, f I ,  f 'I and f "' a t  s = 1, say f r i ,  fji, f:j and fii respectively. At s = 1 continuity of 
df/ds is required and in terms of the numerical scheme in the outer regime was 
represented by a finite-difference formula 

(A + +A2 - *A3 + &A4 - JCA5) f-l E hf&. (18) 

Here A is the forward difference operator. Since f ,  = f r i ,  f-, and f, may then be 
eliminated from the difference equations at s = s1 and s2. At the outer boundary 
s = 1, fn,+2 = 0 and fn,+, was eliminated by using a finite-difference condition 
similar to (18) which expresses the fact that f ' ( s )  vanishes a t  s = 1. An elimination 
method was then used to solve the finite-difference equations. Once this had been 
done, sloping difference formulae, which have a truncation error O(h6) associated 
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FIGURE 2 .  Re ( f ( 0 ) )  from (1)  small-a expansion, ( 2 )  numerical computation, (3) large-a 
expansion; Im{f(O)} x 10 from (4) small-a expansion, ( 5 )  numerical computation, (6) large-a 
expansion. 

with them, were used to obtain values of dy/ds2 and dy/ds3 a t  s = 1, say f $  and 
flj. This process was repeated with three different pairs of values a;) and aii). The 
true solution which has f and its first three derivatives continuous at  s = 1 has 

where d,, d2 and d, are the solutions of the linear equations 

3 3 3 

j=1 i=1 j = l  
s d j  = 1, c dj ( f ; j - f ; l )  = 0, s dj(f;;-f;;) = 0. 

Having determined the correct values of a. and a,, the process was repeated a 
fourth time to obtain the true solution, 

Both the real and imaginary parts off (0) and f '(0) were found to be positive 
and negative respectively for all values of a. The function itself is such that both 
real and imaginary parts oscillate about zero as s increases to infinity. It may be 
inferred from the asymptotic form off (s) for large s that an increasing value of a 
will require an increased value of I ,  corresponding to a larger relative width of the 
E5 layer. This is because the real part of one of the appropriate roots of (10) is 
becoming small as a becomes large. At the largest value of a considered (a = 25) 
1 was eventually taken equal to 160. As a decreases, 1 may be decreased but the 
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FIGURE 3. Re (f'(0)) from (1) small-a expansion, (2) numerical computation, (3) large-a 
expansion; Im (f'(0)) from (4) small-a expansion, ( 5 )  numerical eoniputation, (6) large-a 
expansion. 

grid size h must also be decreased accordingly. As a check on the accuracy a 
number of grid sizes were used for each value of a. The calculated values of 
a, = f(0) and a, = f'(0) for a in the range [ O - O l ,  251 are plotted in figures 2 and 3 
respectively. These figures also display values of these quantities calculated from 
the expansions of (9) for small and large u which are described in the following 
sections. 

2.5 .  Expansion for small a 

As a becomes small, the relative width of the E% layer shrinks; for small a set 

t = u-K 78, F(t)  = a-$f(s), 

d4F ----a*<{LE] 2iF = 0, 
at4  tt dt d dt whereupon 

and F( t )  may be expanded as 

The boundary conditions are 
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j Re {FAO)} Im {FAO)} Re {F:(o)} I m  Pp)) 
0 0.6154 0.7717 - 2.3502 - 1.1318 
1 0.0759 - 0.6734 0.4682 1.3382 
2 - 0.3586 0.2859 0.4019 - 0.8344 
3 0.3080 0.0347 - 0.5855 0.2048 

0.1814 4 - 0.1306 - 0.1638 0.3766 

TABLE 1.  Small-a expansion: calculated values of Fi(0) and Fj(0).  

where Sjo is the Kronecker delta. The method of numerical solution for this 
system is easily inferred from the preceding discussion of the solution of (9). The 
first nine terms of this series were calculated and the values of l $ ( O )  and dl$(O)/dt 
are given in table 1 for j = 0, . . . ,4. These values are sufficient to calculate values 
off ( 0 )  and f ’(0) to at  least three significant figures up to a = 0.1. The field length I 
on which the conditions a t  infinity were imposed was eventually taken as I = 80. 
A number of grid sizes were used in the outer region as a check on the accuracy 
(the smallest being h = 0.024) and the results in table 1 are thought to be correct 
to the figures quoted. The calculated values off (0) and f ’(0) from the first nine 
terms of the expansion are plotted as solid lines in figures 2 and 3 and for a 6 0.4 
these values were virtually identical with those calculated from the direct solution 
of (9) described in the preceding section. 

2.6. Expansion for large a 

The case of a large corresponds to the physical situation where the hemisphere 
radius is large with respect to the separation distance of the plates and for a > I 
the upper part of the hemisphere is sliced off by the top plate. Integrating (9) 
once, we obtain 

and for a. large, expand 

The solution for .f, is 
f (s) = fo(s) + ia-Y,(s) + O(a-2). 

where K+ is the Bessel function of imaginary argument andLao is an arbitrary 
constant. For s large, 

where yo = 3 x 24 I?($) 2f7-+, and therefore for s large 

f, N a , - g y o s ~ - ~ a o s 3 ,  

where a, is an arbitrary constant. Hence 

ia [ E )  5a a 
f(s) -ao l - -S l  -- ss4+--1+ ..., s $  1. 
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The functionsf, and f l  are the leading terms in an inner expansion which must 
be matched to an outer expansion. If we define outer variables 

then P satisfies 
z = a-$8, P(2) = f ( s ) ,  

d2B 1 d B  2iB zta4P +- =-- 
dz2 4~ dz z t  a dz4' 

and P is expanded as 

The solution for P,(z) which vanishes as z .+ co and for which P,(O) = a, is 

P ( z )  = P,(z)  +a-l%,(z) + O(a-2). 

where c, = 8e-tin/7 x 24. Settings = a% in (19) werequire that F ( z )  as z .+ 0 match 
f ( s )  for large s. A match of the 2% term in both expressions fixes a, as 

In  figure 3 the leading term from the large-a expansion is plotted as 

f ( o )  M a,+ 25742+ r(+) r(+)/r(+). 

f ' ( o )  M - 28(;)+ r(+)/r(+). 

(30) 

(21) 

In  figure 3, the leading term for f ' ( 0 )  for large a is given as 

The leading error term in both (20) and (21) is O(a-1) and the calculated values of 
f ( 0 )  andf'(0) are clearIy approaching expressions (20) and (21) for a large. 

2.7. Continuation of th,e expansion in the outer layers 

Suppose that, for a given aspect ratio a, the solution in the E$ layer has been 
determined toleading order, so that a, = f ( 0 )  and a, = f ' ( 0 )  are known. In  general 
a, and a, are non-zero complex constants, which implies a non-zero swirl and 
radialvelocity O(E%%) and O(E%=%) respectivelyat r = a - . Since continuityofu and 
v across the E* layer is required, the expansion is continued in the outer layers as 
follows: in the E* layer, 

and in the E+ layer 
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The solution for u, and v, is 

J .  D. A .  Walker and h'. Stewartson 

v, = Re ( -ia,e-t+is), u, = Re (a,eis(e-g- l)), 

where u1 vanishes at c = 0 since the lowest-order term in u in the ES layer is 
O(ES<). Thus the leading-order flow in the E5 layer, which is not symmetrical 
about 8 = 0,  n, has generated asymmetrical velocities in the Et layer. The equa- 
tions for El and El are identical to those for Go and E,. Setting 

- v, = Re ( - i f ; (s)  eie), El = Re (f,(s) cis), 

where f,(s) satisfies the same equation (9) as f ( s ) ,  then continuity of avpr across 
the E4 layer and the flux condition (1 1)  respectively lead to the two conditions 

f ; ( o )  = 2ta,, Iim { f p  -fils$} = 4. 
340 

In  principle,f,(s) may be obtained numerically, yielding a valuefi(0) = a,,, say, 
and the solution for u2 and v2 is then 

v2(& 8) = Re { - ia,,e-t+fs), 

u2(& 8 )  = Re{29a,eis +a,,eiO(e-~- I)}. 

Higher-order terms in the expansion can be calculated, although from this stage 
onwards neglected terms in the Ekman conditions in the ES layer enter the 
equations and at  a later stage in the Et layer. We do not pursue this further since 
the only point of interest here is that all velocities with the exception of the leading 
term in the Ea layer are asymmetric about 8 = 0, r. The consequences of this in 
connexion with the geostrophic flow for r > a will be examined subsequently. 

In  the E )  layer, the velocity components are written as 

v) = Re [ ((:)'Ei'B a, - 237 Ei% + Ez%-ij, + EZij, + . . .] { - i do}] , 

w6 = Re [{EAG, + EEG2 + . . .} { - i efe}], 

(22) 

The solutions for the leading terms ij, and GI are essentially those given by 
Stewartson (1966). 

2.8. TheJlouj in the ES layer 
One point of interest regarding the shear layers concerns the particle paths in the 
ES layer. A stream function ' ( r ,  0) is defined by 

Here 'is defined as zero in the stagnant region above the hemisphere. The stream 
function in the E' layer is 
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FIGURE 4. Projections of streamlines in the E$ layer (not to scale). 

and to leading order 

$ = (2/a)3 Ei%p+O(EA),  $ = Re{if(s) eie}. 

In  figure 4 the lines of constant pa re  plotted for the case a = 0.05. This picture 
represents the projections of streamlines that an observer looking down from 
above would see. Here the region of the thin E f  layer has been blown up out of 
scale for closer inspection. The outer circle corresponds to the hemisphere rim 
while the inner circle corresponds to  the edge of the stagnant interior. For the 
case a = 0-05 the boundary on which the zero conditions for f (s) were imposed 
was taken at  1 = 26 but in figure 4 only the region between s = 0 and s = 2 is 
plotted. All the salient features of the flow can be inferred from figure 4 though. 

The flow is separated into two antisymmetrical parts by the two spiral arms of 
the line 3 = 0 A particle which crosses the rim from upstream on this line will 
spiral in towards the stagnant interior, progressively slowing down as it pene- 
trates deeper. Conversely on the other line p = 0 particles are accelerated from 
the stagnant interior, spiral out and eventually leave downstream as they cross 
the rim in the fourth quadrant. It is only on these paths that a particle can either 
penetrate or leave the stagnant interior. Both however are limiting projected 
streamlines and envelopes of the other path lines. As such there is zero actual 
transfer of fluid from the stagnant interior. 
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Since the flow for lines of negative $is the reflexion of that for positive $ except 
that the direction of the velocity vector is reversed we need only discuss the flow 
for lines of positive $. The projected streamline labelled 0.03 is similar to the 
type of particle path that is the basis of the motion in Jacobs’ (1964) solution for 
a lenticular body. A particle on this path crosses the rim in the second quadrant 
and spirals down between the lines $ = 0 and $ = 0.049. (To avoid overcrowding 
in figure 4, the entire line $ = 0.03 has not been drawn in.) The path $ = 0.03 is 
shown terminating in the third quadrant a t  the stagnant interior but this is only 
because of a space limitation in the diagram. A particle on this path continues to 
spiral inward until eventually it reverses direction and spirals back out to the 
rim. The path $ = 0.03 is shown emerging again in the fourth quadrant where- 
upon it circles around and eventually passes out over the rim in the fourth 
quadrant. All particles on path lines between $ = 0 and 3 = 0.049 will move in 
this reversing spiral motion. 

The interesting difference between the hemisphere and the lenticular body 
(Jacobs 1964) is the appearance of two trapped eddies in the inner layer of which 
the projected streamline $ = 0.049 is approximately the limiting path line. 
Within this line, particles appear to be forced to recirculate (e.g. $7 = 0.09). In  
general there are four stagnation points: (a)  at the centre of the eddies in the first 
and third quadrants and ( b )  at the edge of the limiting projected streamlines 
9 = 0.049 in the second and fourth quadrants. The condition for a stagnation 
point is u = v = 0 or 

Re (f(s) eie) = Re (if’(.) e fe )  = 0, 

and eliminating 0 from these equations gives 

- 

Re(f’(s)f*(s)} = 0 or ~?lf)~/ds = 0. 

This is not an unreasonable condition and was found to be satisfied byj(s)  for all 
numerical solutions at  two points in the range of s. Outside the eddy, particles on 
the line $ = 0.049 cross the rim in the second quadrant, are subsequently turned 
away from the stagnation point and circle around, passing over the rim in the 
fourth quadrant. 

The appearance of the trapped eddies appears a t  first sight disturbing. This is 
because associated with this motion there is a weak vertical motion [O(E&)]. This 
vertical velocity is continually changing sign in the E+ layer and, for example, 
part of the projected streamline = 0.09 lies in a region of positive vertical 
velocity and part in a region of negative vertical velocity. However some closed 
path lines near the eddy centre in the second quadrant lie entirely in a region of 
positive vertical velocity. Since the Ekman condition a t  the top plate requires 
zero vertical velocity there, this appears to be of some concern since to leading 
order there can be no net transfer of fluid to the top Ekman layer. We first remark 
that the time required for a particle to complete a closed circuit is O(E-h) while 
the time required for it to travel an O(1) distance in the vertical direction is 
O(E-i%). The fluid particles must therefore traverse an infinite number of circuits 
before moving an O( 1) distance away from or towards the top Ekman layer. 

Whether or not these trapped eddies are an actual feature of the flow is not 
known. One possibility is that what to leading order appears as a two-dimensional 
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closed-circuit motion may in reality be found to be a spiral motion to (or away 
from) a point when the higher-order terms are considered. Consider for example 
the motion 

where (x, y, z )  are rectangular Cartesian co-ordinates and ( U ,  V ,  W )  are the 
corresponding velocity components. This is a two-dimensional motion wherein 
the streamlines are concentric circles centred at x = y = 0. If we now consider a 
perturbation to this motion 

where 6 is a small constant, then a projection of the particle paths in a plane of 
constant z indicates that the particles spiral slowly away from or towards 
x = y = 0 depending on the sign of 6. 

Another possibility is that the higher-order terms in the expansions for u+ and 
v+ act to dispIace the eddies in such a way that through every closed circuit in a 
plane of constant z there is no net flux of fluid. To attempt to verify this would be 
a formidable task since this would involve the calculation of five terms in the 
expansions for u+ and v?. It is only a t  the stage when v+ contains a term O(E*%) 
that the leading-order vertical velocity @,,(s, 8, z )  enters the continuity equation. 
This possibility seems the most likely but the question remains unresolved here. 

u = Y, v=-x,  W = O ,  

u = y-ax, v = -x, w = 6(x- I), 

2.9. Modijication of the geostrophic JEow 

Lastly a complete match may now be made with the geostrophic flow for r > a. 
In  the Ef layer the stream function is 

For r > a + , to O(E4) the geostrophic stream function is harmonic and 
m 

@rG(r,8) = -rsin8+ s 
For 6 large, @([, 8) must match 
in (24), this can be shown to be satisfied if 

8) as r -+ a + and by writing r = a + gE4/24 

D, = a2 + S*aEi + (2/a)S 2-4 aE+ Re (al) + O(E*%), 
C, = (2/a)Q 2-4 aES Im (a,) + O(ESc), 

D, = Cn = 0, n > 1. 
Thus for r > a 

and a weak asymmetric flow [O(E+)] about 8 = 0 , m  is present. In  order to make 
a qualitative comparison with Baker’s photograph (Greenspan 1968, p. 3) and 
the photographs of Hide et al. (1968) it is necessary to know what the sign of Cl is 
in general. If the procedure of the latter part of 9 2.3 is repeated using the correct 
boundary conditions (15) for f ( s )  rather than (14), it may be shown that 

50 F L M  66 
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Therefore for all a, a, = f'(0) has negative real and imaginary parts and since C, 
is negative for all a, the asymmetric terms in (35) yield weak velocities which will 
tend to produce the experimentally observed asymmetry. 

3. Nonlinear theory 
To investigate the nonlinear modifications to the flow when e + 0 we consider 

the case when e = O(E4). For a Rossby number of this order of magnitude the 
inertial terms in the swirl momentum equation become of the same order of 
magnitude as the viscous stress in the EQ layer. Barcilon (1970) has shown that, 
provided e < 1, inertial effects in the Ekman layers, which control an O( 1)  geo- 
strophic flow, may be neglected and hence the linear Ekman conditions may still 
be used in the present case. Setting 

e = ahE:, 

where h is an O( 1) constant, the zeroth-order equation for the geostrophic flow 
for r > a may be obtained as 

Therefore to lowest order the two-dimensional irrotational solution (4) is still 
appropriate in the nonlinear case for T > a. For T < a, the Ekman condition (3) 
gives U, = 0 and it may be readily shown that any axially symmetric solution 
must be stagnant over the hemisphere. 

In  the shear layers the same expansion for the velocity componentsand pressure 
is used as in the linear theory. According to the expansion (7) it  may be easily 
verified that nonlinear effects do not become important in the B$ layer until 
e = O(EZ).  Bearing in mind that the form of the solution in the Eg layer will be 
analogous to (22) it may be deduced that nonlinear effects in the E* layer become 
important when e = O(E2).  In  the Ekman layers which bracket the ES and E* 
layers and also the E* layer, nonlinear effects are important when e = O(E4) and 
O(E19) respectively. In  the boundary-layer context all of these orders of magni- 
tude are much greater than O(E4) and hence these layers may be treated as being 
linear. Because at this stage nonlinear effects are only important in the Et layer, 
the arguments that led to 

u,([, 0) = no([, 0) = 0 at 5 = 0 (26) 

in the linear case are still valid. Thus the leading-order motion in the nonlinear 
E i  layer is identical to that for flow past a solid circular cylinder in a rotating 
frame. In  a recent paper, Walker & Stewartson (1972) in their study of this latter 
problem derived the equations satisfied by uo and no when E = O(E4) and the 
result is simply quoted here. If N = 3/h then 

with 
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Here the geostrophic velocity V, in (27) is evaluated at r = a + . The boundary 
conditions for this system are (26) and 

vO(t,B)-+ -2sinB = V,(a+,B) as C- tco .  

The terms neglected in deriving these equations are O(E4). Equations (27) and 
(28) arise in the study of the viscous boundary layer on a cylinder with an 
associated applied radial magnetic field which is strong in the sense that induced 
fields may be neglected. There the parameter N is termed the interaction para- 
meter and is the square of the Hartmann number divided by the Reynolds 
number. This problem has been studied by Leibovich (1967) and Buckmaster 
(1969, 1971). 

Leibovich (1967) considered the flow in the vicinity of the rear stagnation 
point of the cylinder and showed that a similarity solution of the form uo = Bf’(5) 
could be found if and only if N > 4. (Leibovich’s (1967) analysis was for a general 
bluff body and his interaction parameter is based on the local inviscid velocity 
gradient at  the rear stagnation point.) Thus for N > 4 ( E  < +aE*), separation 
does not occur and the flow in the E* layer is completely attached around the 
perimeter of the Taylor column. 

For 2 < N < 4, Leibovich (1967) suggested that separation without reversed 
flow would occur and that the flow was inherently unsteady. The meaning of the 
former conclusion is unclear and was disputed by Buckmaster (1969)) who argued 
that separation would not occur in this range of N .  He presented a number of 
arguments to substantiate this including a numerical integration of the boundary- 
layer equations. In  a subsequent paper, Buckmaster (1971) examined this range 
of N in more detail and concluded that the flow in an inviscid region of the 
boundary layer at large distances from the body is unsteady. In  the present 
problem this suggests a possible unsteadiness in the outer regions of the E i  layer 
but no separation when $aE* < e < aE*. 

For N < 2, Leibovich (1967), using methods similar to those of Proudman & 
Johnson (1962)) showed that the flow in the vicinity of the rear stagnation point 
was inherently unsteady with a growing inviscid region dominated by eddies. 
The flow near the back of the cylinder is ultimately ( t  -+ 00) that for a forward 
stagnation point. In  the present context then, if E > aE* separation takes place 
in the E i  layer; the interesting difference here is that, unlike the case of a solid 
cylinder, separation occurs at a fluid-fluid interface in a free shear layer. We 
remark here that, while the theory asserts that no steady solution exists for 
E > aE* and that separation takes place, it does not discuss the subsequent time- 
dependent development of the separated region. The prime result here is that the 
free shear layer breaks down a t  separation, a consequence which could not 
possibly be predicted from the basic linear theory. This conclusion is supported 
by experiments where there is observed to be a breakaway of the free shear layer 
which looks remarkably like the classical separation. 
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4. Concluding remarks 
It is now a relatively simple exercise to consider the Taylor-column problem 

for flow past a general symmetrical obstacle which has an infinite slope at  the rim 
( r  = a).  Let the obstacle be such that 

z+C(a-r)lt as r+a,  where 0 < n < 1. 

The leading terms for the expansions of the velocity components are the same in 
the external Ef layer as in the hemisphere case but the width of the E5 layer is now 
modified to O(EB), where /3 = I/ (%+ 3). In  this layer, the leading terms for the 
velocity components are 

uB = a-l(nC)-2p E4(5-n)b.ii(x, 8 )  + . . . , 
wB = (nC)-a Ea(l-n)Pfi(~, 8 )  + . . . , 

"la = (nC)28E4(3n+Q3G(x, 8, z )  + . . ., 
where x = (nC)a(a- r )  E-a is the scaled radial variable in the EP layer. The 
functions 5, G and ZZ are O( 1)  functions of (x ,  8) and it may be shown that 

a.ii afi -- - --= 
ax3 ax xg(l-n) ax1-n O ,  - ax - a@' 

This system with an appropriate flux condition and continuity of v and av/ar 
across the E-S layer can in principle be solved in an analogous manner to the 
method of solution for the leading term in the E5 layer for the hemisphere. In 
particular, the arguments that led to the zero boundary conditions (26) for the 
components uo and vo in the external Ea layer may be repeated. The implication 
of this is that, in the nonlinear case, separation also occurs in the external Ef 
layer for these obstacles when e > aE6. 

One further point is of interest in this connexion. As n becomes small the width 
of the Ejlayer becomes arbitrarily close to O(E4) and the leading terms for va and 
wa become of the same magnitude [O(Ei%)]. This is in accordance with the work of 
Foster (1972), who considered the linear theory for flow past a circular cylindrical 
obstacle. He found that while there is an external Ed. layer at  r = a + , there is only 
an internal E )  layer above the cylinder. 

Finally the separation criterion (6 > aE4) can also be shown to be appropriate 
in the case of an arbitrary spheroid translating in a straight line transversely to 
the rotation axis in a contained rapidly rotating fluid. In  this case, the work of 
Moore & Saffman (1969a,b) shows that the correct matching conditions are 
continuity of swirl velocity and total tangential stress (not local) across the E )  
layer. In  this case the boundary conditions (26) for the functions u,, and wo in the 
external E t  layer can again be deduced. 

a 2 f i  a [ fi 1 25 
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